
Advanced VampirTrace

Tips & Tricks

Thomas Ilsche, ORNL

May 17, 2011

2 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Overview

• VampirTrace on lens etc.

• Write a runtime filter file

• Limit compiler instrumentation

• Manual source code instrumentation

• Merge / Shrink large trace files

• Additional topics

3 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Documentation

• Remember that the documentation is very valuable!

• /sw/sources/vampirtrace/5.11ornl/doc/UserManual.pdf

• Instrumentation
– Note: Dyninst and Library tracing is not supported on Jaguar

• Runtime Options

• Counters

• Filtering & Grouping

• Command Reference

4 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

VampirTrace on lens etc.

• On normal Linux systems gcc (or the PE-specific compiler)
is the default compiler for vtcc
For MPI, tell vtcc to use mpicc

$vtcc -vt:cc mpicc
$vtcxx -vt:cxx mpicxx
$vtf90 -vt:f90 mpif90

• If your build system uses gcc -lmpi manually, you do
not need to specify mpicc

5 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

GPU Tracing

• Works on yona or lens

– CUDA version on lens is old

• Library calls to cudart are wrapped, trace contains:
– API Calls

– CUDA streams as ‘Threads’

– Kernel execution as function execution on the streams

– Memory copy as ‘MPI p2p’

– CUPTI performance counters

• Environment variables
– VT_CUDARTTRACE=yes (set by module load)

– VT_CUPTI_METRICS=local_store:local_load

6 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Write a runtime filter File

• Motivation

– Reduce trace size

– Reduce flush overhead

• Filter file format

call limit definitions and region assignments
syntax: <regions> -- <limit>
regions semicolon-separated list of regions
(can be wildcards)
limit assigned call limit
0 = region(s) denied
-1 = unlimited
add;sub;mul;div -- 0
very_important_function -- -1
unintersting_module* -- 0
* -- 3000000

7 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Write a runtime filter File (cont.)

• Apply using export VT_FILTER_SPEC=filter.txt

• vtfilter generates filter file from traces

– $ vtfilter --gen -r 50 -stats \
-o filter.txt intput.otf

– Parallel version for large traces
$ aprun -n 1044 vtfilter-mpi -o ./filter.out
--reduce=20 -s ./trace.otf

• Doesn’t need as many processes as the original application, try 1/32

8 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Limit compiler instrumentation (gcc)

• Motivation

– Compiler instrumentation is easy to use

– But runtime filters do not eliminate the complete overhead

– And manual instrumentation is time-consuming

• Two parameters for gnu compilers
– -finstrument-functions-exclude-function-list

– -finstrument-functions-exclude-file-list

– Arguments separated by comma

– Match is done by substrings, but no real wildcards

– User-visible name is used (rather than mangled one)

• Strange behavior for inlined functions

• Global constructors appear to be ‘resistant’

9 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Limit compiler instrumentation (C)

• Alternative solution using code modification in C
– __attribute__ ((__no_instrument_function__))

before a function declaration

– Works for gcc, icc, pathcc

– Does not affect pgcc

10 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Source instrumentation using TAU/PDT

• Motivation

– Allows selective automatic source code instrumentation

– No problems with internal compiler functions
(e.g. global constructors) polluting the trace

• Add -vt:inst tauinst
-vt:tau “-f <filename>”

BEGIN_FILE_EXCLUDE_LIST
*stl_tree.h
*.I
END_FILE_EXCLUDE_LIST
BEGIN_EXCLUDE_LIST
check_foo_#
END_EXCLUDE_LIST

– Also allows include lists

• Some issues with compiler specific codes (e.g. Macros)

11 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Manual Source Code instrumentation

• Motivation

– Best control over instrumentation

– Also record non-function regions or non-PAPI counters

• API available for C and Fortran.

• Instrumentation is done by using macros, so it can be
disabled without any impact on the application

12 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Manual Source Code instrumentation (C)

#include “foo.h”
void bar() {
compute1();
if (cond()) {

return;
}
compute2();

}

#include “foo.h”

#include “vt_user.h”
void bar() {

VT_USER_START(“bar”);

compute1();
if (cond()) {
VT_USER_END(“bar”);

return;
}
compute2();

VT_USER_END(“bar”);
}

13 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Manual Source Code instrumentation (C++)

void run() {

for (i=0;i<nSteps;i++) {

VT_TRACER(“timestep”);
compute1();

compute2();

compute3();
}

}

14 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Manual Source Code instrumentation (Fortran)

#include "vt_user.inc“

…

VT_USER_START(’name’)

…

VT_USER_END(’name’)

15 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Manual Source Code instrumentation

• Needs to be explicitly enabled during compilation

• $ vtcc -vt:inst manual -DVTRACE hello.c -o hello

• Otherwise there will be no overhead

• Source code instrumentation can be combined with all
other instrumentation types

16 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Merge large trace files

• otfmerge-mpi reduces the number of files in a trace while
keeping all processes and events
$ aprun -n 10000 otfmerge-mpi -n 10000 -z 9 -o trace-
merged trace.otf

• Huge traces can become more easy to handle

• Use only when you are stuck or trace handling is
inconvenient

17 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Shrink large trace files

• otfshrink selects / hides processes

• Select a list of processes:
$ otfshrink -i input.otf -o shrink.otf -l 1 10 100 1000

• Select a range of processes (first 100):
$ otfshrink -i input.otf -o shrink.otf -l 1-100

• Select every 4th process of 4096:
$ otfshrink -i input.otf -o shrink.otf -l `seq 1 4 4096`

• Created trace is just a collection of symlinks

• Huge traces can become more easy to handle

• You might lose the view on performance anomalies
(especially MPI) that correlate with your selection pattern

18 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Shorten long function names

– $ vtbeautify foo.otf

#!/bin/bash
DEF=$1.0.def
echo "Beautifying $DEF, backup in $DEF.ugly.“
cp $DEF.z $DEF.z.ugly
otfdecompress $DEF.z
cp $DEF $DEF.ugly
cat $DEF | sed 's/[(].*[)]//' | sed 's/<.*>//g' |
| sed 's/__/_/' | sed 's/_module_MOD//' > $DEF

– Removes C++ function and template-parameters

– Removes _module_MOD from Fortran names

– Removes double underscore

19 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Additional topics (1)

• Additional source code instrumentation

– User defined Counters

• Keep track of numerical values during program execution, e.g. Buffer sizes

– User defined Markers

• Add arbitrary textual information to the trace

• More convenient to browse in a visual timeline vs. textual logging

• Function grouping gives a better overview

20 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Additional topics (2)

• Separate trace unification

– Useful for time measurements on aprun

– $ export VT_UNIFY=no
$ aprun -n 4096 ./MyApplication
$ aprun -n 1024 vtunify-mpi MyApplication

• Add line number information to the trace
– $ export VT_GNU_NM=/tmp/work/$USER/.vt/bin/nm \

--demangle --line-numbers

– Can take long time at application startup
– $ nm --demangle --line-numbers foo > foo.nm
$ export VT_GNU_NMFILE=foo.nm

21 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Thank you

• Contact:

– Thomas Ilsche, ORNL
5700 B206
tt1@ornl.gov
865-241-6293

mailto:tt1@ornl.gov

